Let
⎷4−13√2
⎷4−13√2√4−13√2⋯⋯∞=y, y>0
⇒4−13√2
⎷4−13√2√4−13√2⋯⋯∞=y2
⇒4−13√2⋅y=y2
⇒y2+y3√2−4=0
⇒3√2y2+y−12√2=0
⇒y=−1±√1+2886√2
⇒y=−1+176√2 or y=−1−176√2 (rejected)
⇒y=83√2
∴3+log(3/2)2(13√2⋅83√2)
=3+12log3/2(49)
=3+12log3/2(23)2
=3+12⋅2log3/2(23)
=3−12⋅2log3/2(32)
=3−1=2