The correct option is D 131
(1−x)30=30C0−30C1⋅x+30C2⋅x2−⋯+30C30⋅x30
Integrating both sides w.r.t. x from x=0 to x=1
1∫0(1−x)30dx=1∫030C0dx−1∫030C1xdx+1∫030C2x2dx−⋯+1∫030C30x30dx
⇒[−(1−x)3131]10=[30C0x]10−[30C1x22]10+[30C2x33]10−⋯+[30C30x3131]10
Putting x=1, we get
30C0− 30C12+ 30C23−......+ 30C3031=131