wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ is, where θ(π4,π2)


A

13-4cos4θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

13-4cos6θ

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

13-4cos6θ+2sin4θcos2θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

13-4cos4θ+2sin4θcos2θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

13-4cos6θ


Explanation for the correct answer:

Let S=3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ

S=3cosθ-sinθ22+6sinθ+cosθ2+4(sin2θ)3 a-b2=a2+b2-2ab

S=3cos2θ+sin2θ-2sinθcosθ2+6cos2θ+sin2θ+2sinθcosθ+41-cos2θ3

S=31-sin2θ2+61+sin2θ+41-cos6θ-3cos2θ(1-cos2θ) sin2θ=2sinθcosθ,sin2θ+cos2θ=1

S=31+sin22θ-2sin2θ+61+sin2θ+41-cos6θ-3cos2θsin2θ)

S=3+3sin22θ-6sin2θ+6+6sin2θ+4-4cos6θ-12sin2θcos2θ

S=13+34sin2θcos2θ-4cos6θ-12sin2θcos2θ

S=13-4cos6θ

Therefore, the value of the expression 3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ is 13-4cos6θ.

Hence, option B is the correct answer.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon