The correct option is B 223
tan(45°−θ)=1−tanθ1+tanθ
⇒1+tan(45°−θ) =1+1−tanθ1+tanθ =21+tanθ
⇒(1+tan(45°−θ))(1+tanθ)=2
Put θ=0∘, (1+tan45°)(1+tan0°)=2
Put θ=1∘, (1+tan44°)(1+tan1°)=2
Put θ=2∘, (1+tan43°)(1+tan2°)=2
....
Put θ=45∘, (1+tan0°)(1+tan45°)=2
Multiplying above equations, we get
A2=246
⇒A=223,−223
But A≠−223 as tanθ>0 for 1≤θ≤45∘
∴A=223