The correct option is D −52,−32
limx→0x(1+acosx)−bsinxx3=1
Consider, limx→0x(1+acosx)−bsinxx3
It is of the form 00, so applying L-Hospital's rule
=limx→0−axsinx+1+acosx−bcosx3x2
Again applying L-Hospital's rule,
=limx→0−axcosx−2asinx+bsinx6x
=limx→0−a(cosx−xsinx)−2acosx+bcosx6x
−3a+b6
⇒−3a+b=6
Option C satisfies.