The value of(a+b)2–(a–b)2 is
4ab
–4ab
2a2+2b2
2a2–2b2
Find the value of(a+b)2–(a–b)2
(a+b)2=(a2+b2+2ab)and(a–b)2=(a2+b2–2ab)Then(a+b)2–(a–b)2=(a2+b2+2ab)–(a2+b2–2ab)=a2–a2+b2–b2+2ab+2ab=4ab∴(a+b)2–(a–b)2=4ab
∴The correct option is A.