The correct option is B 60
Given: (a+b)(a+c)(b+c)
To find : The value of (a+b)(a+c)(b+c) when a=1, b=2 and c=3
By applying distributivity property,
(a+b)(a+c)(b+c)=(a2+ac+ba+bc)(b+c)=a2b+a2c+bac+ac2+ab2+abc+b2c+bc2
On substituting the values a=1, b=2 and c=3, we get,
(12×2)+(12×3)+(2×1×3)+(1×32)+(1×22)+(1×2×3)+(22×3)(2×32)=2+3+6+9+4+6+12+18=60