The value of a cos θ + b sin θ lies between
a-b and a+b
a and b
-(a2+b2) And (a2+b2)
-√a2+b2 And √a2+b2
a cos θ + b sin θ = √a2+b2 (acosθ√a2+b2+bsinθ√a2+b2)
= √a2+b2 sin(θ+ϕ)
Since, −1≤sin(θ+ϕ) ≤ 1,
Then -√a2+b2 ≤ sin(θ+ϕ) ≤ √a2+b2.