The correct options are
B −1
D 1
Given curve,xay=λa ................(1)
(λ,1) is a point on the given curve.
Now, differentiating eqn(1) w.r.t x we get
axa−1y+xadydx=0
dydx=−axa−1yxa=−ayx
At (λ,1),dydx=−aλ
Equation of tangent at (λ,1)
y−1=−aλ(x−λ),
Now, x=0
⇒y=1+a
y=0
⇒x=λa+λ=λ(1+a)a
Area,A=12×(1+a)×λ(1+a)a
Now, dAda=12λ[a.2(2+a)−(1+a)2a2]=0
⇒(2a−1−a)(1+a)=0
⇒(a−1)(a+1)=0
⇒a=1,a=−1