The correct options are
A −1
D 1
Given curve xay=λa
(λ,1) is a point on the given curve.
Now, differentiating w.r.t. x we get
axa−1y+xadydx=0
⇒dydx=−axa−1yxa=−ayx
at (λ,1),dydx=−aλ
Equation of tangent at (λ,1)
y−1=−aλ(x−λ)
Now, x=0,⇒y=1+a
y=0⇒x=λa+λ(1+a)a
Area=A=12×(1+a)λ(1+a)a
Now, dAda=12λ[a×2(1+a)−(1+a)2a2]=0
⇒(2a−1−a)(1+a)=0
⇒(a−1)(a+1)=0
∴a=1,−1