The value of ′a′ for which the function f(x)=sinx−cosx−ax+b decreases for all real values of x, is
Hence
f′(x)
=cosx+sinx−a
=√2[cosx+sinx√2]−a
=√2sin(π4+x)−a
<0
Hence
√2sin(π4+x)<a
Now
|sinθ|<1
Hence
a>√2 ...for strictly decreasing
nature.
If only decreasing and not strictly decreasing,
then
a≥√2.