The value of (a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41 is
-2
(a+1)(a+2)(a+3)
0
(a+2)(a+3)(a+4)
Explanation for the correct option:
Solve the given determinant
Given, (a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41
C1→C1-C2△=(a+2)aa+21(a+3)(a+1)a+31(a+4)(a+2)a+41C2→C2-C3△=(a+2)aa+11(a+3)(a+1)a+21(a+4)(a+2)a+31R2→R2-R1,R3→R3-R1△=(a2+2a)a+11(2a+3)10(4a+8)20=6-8=-2
Hence, the correct answer is option (A).