The value of ∣∣
∣∣3x−x+y−x+zx−y3yz−yx−zy−z3z∣∣
∣∣ equals to
We have ∣∣
∣∣3x−x+y−x+zx−y3yz−yx−zy−z3z∣∣
∣∣
Applying C1→C1+C2+C3
=∣∣
∣∣x+y+z−x+y−x+zx+y+z3yz−yx+y+zy−z3z∣∣
∣∣ Taking (x+y+z) common from C1
=(x+y+z)∣∣
∣∣1−x+y−x+z13yz−y1y−z3z∣∣
∣∣
Applying R2→R2−R1 and R3→R3−R1
=(x+y+z)∣∣
∣∣1−x+y−x+z02y+xx−y0x−z2z+x∣∣
∣∣
Applying C2→C2−C3
=(x+y+z)∣∣
∣∣1y−z−x+z03yx−y0−3z2z+x∣∣
∣∣
Expanding along first column, we get
(x+y+z)⋅1[3y(2z+x)+(3z)(x−y)]=(x+y+z)(3yz+3yx+3xz)=3(x+y+z)(xy+yz+zx)