wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of ∣ ∣ ∣(b+c)2baacba(c+a)2cbcacb(a+b)2∣ ∣ ∣ is:

A
2abc(a+b+c)3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
abc(a+b+c)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∣ ∣ ∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣ ∣ ∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
∣ ∣ ∣(bc)2a2a2b2(ca)2b2c2c2(ab)2∣ ∣ ∣
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C ∣ ∣ ∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣ ∣ ∣
Multiplying R1,R2,R3 by a,b,c respectively and dividing by abc, we get

Δ=1abc×∣ ∣ ∣a(b+c)2ba2ca2ab2b(c+a)2cb2ac2bc2c(a+b)2∣ ∣ ∣

Taking a,b,c common from C1,C2 and C3 respectively, we get
Δ=∣ ∣ ∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣ ∣ ∣
Now applying C2C2C1,C3C3C1 we get:

Δ=∣ ∣ ∣(b+c)2(a+b+c)(abc)(abc)(a+b+c)b2(c+a+b)(c+ab)0c20(a+b+c)(a+bc)∣ ∣ ∣

Δ=(a+b+c)2×∣ ∣ ∣(b+c)2abcabcb2c+ab0c20a+bc∣ ∣ ∣

Applying R1R1(R2+R3) and the taking 2 common from R1, we get

Δ=2(a+b+c)2×∣ ∣ ∣bccbb2c+ab0c20a+bc∣ ∣ ∣
Now, applying C2bC2+C1,C3cC3+C1 gives

Δ=2(a+b+c)2bc×∣ ∣ ∣bc00b2b(c+a)b2c2c2c(a+b)∣ ∣ ∣
Δ=2(a+b+c)2bcbc[(bc+ba)(ca+cb)b2c2]
Δ=2(a+b+c)2[bc(ac+bc+ab+a2bc)]
Δ=2abc(a+b+c)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon