The value of ∣∣
∣
∣
∣∣sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣∣ is
A
zero for few values of θ.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
zero for all values of θ.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
zero for no value of θ.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
zero for one value of θ.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B zero for all values of θ. Let Δ=∣∣
∣
∣
∣∣sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣∣
Applying R2→R2+R3 =∣∣
∣
∣
∣∣sinθcosθsin2θsin(θ+2π3)+sin(θ−2π3)cos(θ+2π3)+cos(θ−2π3)sin(2θ+4π3)+sin(2θ−4π3)sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣∣ sin(θ+2π3)+sin(θ−2π3)=2sinθcos2π3 =2sinθcos(π−π3) =−2sinθcosπ3=−sinθ
and cos(θ+2π3)+cos(θ+2π3) =2cosθcos(2π3)=2cosθ(−12)=−cosθ
and sin(2θ+4π3)+cos(2θ−4π3) =2sin2θcos4π3=2sin2θcos(π+π3) =−2sin2θcosπ3=−sin2θ ∴Δ=∣∣
∣
∣∣sinθcosθsin2θ−sinθ−cosθ−sin2θsin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣∣=0
[Since, R1 and R2 are proportional]