The value of C0+2C1+3C2+4C3+…+(n+1)Cn is
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
( where Cr=nCr)
A
(n+2)⋅2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n⋅2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n⋅2n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n+2)⋅2n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(n+2)⋅2n−1 S=nC0⋅a+nC1⋅(a+d)+nC2⋅(a+2d)+⋯+nCn(a+nd)
We know that S=a+(a+nd)2⋅2n
Then C0+2C1+3C2+4C3+…+(n+1)Cn=1+n+12⋅2n=(n+2)2n−1
Alternate solution
Let Sn=C0+2C1+3C2+4C3+…+(n+1)Cn =n∑r=0(r+1)Cr=n∑r=0rCr+n∑r=0Cr=n∑r=1rCr+n∑r=0Cr=nn∑r=1n−1Cr−1++n∑r=0nCr=n⋅2n−1+2n=(n+2)⋅2n−1