The correct option is D −1
For c<1,∫1c(8x2−x5)dx=163(given)
⇒[8x33−x66]1c
⇒83−16−8c33+c66=163
⇒c3[−83+c36]=163−83+16=176
⇒−83c3+c66=176
⇒c6−16c3−17=0
On factorization, we get (c3+1)(c3−17)=0
⇒c3=−1,17
⇒c=−1,1713
⇒c=−1 satisfy the above equation.
For c≥1, none of the values of c satisfies the required condition that
∫c1(8x2−x5)dx=163
∴c=−1