The correct option is C 2
∣∣
∣∣xnrmyrmyz∣∣
∣∣=0
applying R1→R1−R2;R2→R2−R3 we get
∣∣
∣∣x−mn−y00y−nr−zmnz∣∣
∣∣=0⇒(x−m)(y−n)z+(n−y)(r−z)m−n(r−z)(x−m)=0
dividing by (x−m)(y−n)(z−r) we have
zz−r+mx−m+ny−n=0⇒zz−r+1+mx−m+1+ny−n+1=2
⇒zz−r+mx−m+ny−n=2=2⇒zz−r−1+mx−m−1+ny−n−1=0−1=−1
Now A.M≥G.M⇒zz−r+mx−m+ny−n3≥(zz−r+xx−m+yy−n=0)1/3⇒zz−r+mx−m+ny−n≤827