The value of cos−1(cos3π2) is
(a) π2 (b) 3π2 (c) 5π2 (d) 7π2
(a) We have, cos−1(cos3π2)=cos−1[ cos(2π−π2)] [∵ cos(2π−π2)=cosπ2]=cos−1[ cos(π2)]=π2 {∵ cos−1(cos x)=x, x∈[0, π]}
Note Remember that, cos−1(cos3π2)≠3π2
∴ 3π2∉(0, π)
√(1+sinA)−√(1−sinA)=−2cos(A/2)
The argument of 1−i1+i is
The value of sin−1[cos(33π5)] is
(a) 3π5 (b) −7π5 (c) π10 (d) −π10
If x,yϵ(0,π2) and (cos x)sin y+1sin y=tan z, then z can lie in