The correct option is
C −x2cot−1(√1−sinx+√1+sinx√1−sinx−√1+sinx)
sin2x=2sinxcosx.
also, sinx=2sinx2cosx2...(1)
also, 1+sinx=2sinx2cosx2+1
since sin2x+cos2x=1
sin2x2+cos2x2=1
1+sinx=sin2x2+cos2x2+2sinx2cosx2
1+sinx=(sinx2+cosx2)2
√1+sinx=sinx2+cosx2...(2)
Similarly
multiply by -1 in eqn (1),
−sinx=2sinx2cosx2
Now adding 1 to the above eqn
1−sinx=1−2sinx2cosx2
∴ we get √1−sinx=(cosx2−sinx2)...(3)
cos−1(√1−sinx+√1+sinx√1−sinx−√1+sinx)
=cos−1(cosx2−sinx2+sinx2+cosx2cosx2−sinx2−sinx2−cosx2)
=cos−1(2cosx2−2sinx2)=cot−1(cotx2)
=−cot−1(cotx2)(∴cotx is an add function)
=−x2