The correct option is D 17/2
We know that, sin(90∘−θ)=cosθ
Therefore cos25∘+cos210∘+cos215∘+………..+cos285∘+cos290∘
= sin2(90−5)∘+sin2(90−10)∘+sin2(90−15)∘+………..+cos285∘+cos290∘
The above expression has (90/5) = 18 terms out of which cos90∘ is 0, leaving 17 terms.
Also, sin2θ+cos2θ=1
sin2(90−5)∘+sin2(90−10)∘+sin2(90−15)∘+………..+cos285∘+0
= sin285∘+sin280∘+sin275∘+………..+cos275∘+cos285∘
Out of these 17 terms, there are 8 pairs which are of the form sin2θ+cos2θ=1; left out term is cos245∘ = 12
= 8*1 + 0 + 12
= 8 + 12
= 172
The value of cos25∘+cos210∘+cos215∘+………..+cos285∘+cos290∘ is equal to 17/2