The value of cos2 (π6+θ)− sin2 (π6−θ) is
12 cos 2θ
We have,
cos2 (π6+θ)−sin2 (π6−θ)=cos2 (π6+θ)−cos2 [π2−(π6−θ)]=cos2 (π6+θ)−cos2(π3+θ)
=[cos(π6+θ)+cos(π3+θ)][cos (π6+θ)−cos(π3+θ)]=2 cos(π6+θ+π3+θ2)cos(π6+θ−π3−θ2) 2 sin (π6+θ+π3+θ2) sin (π2+θ−π6−θ6)
=4 cos (π4+θ) cos (−π12) sin (π4+θ) sin (π12)=4 cos (π4+θ) cos (π12) sin (π4+θ) sin (π12)=[2 sin (π4+θ) cos (π4+θ)][2 sin (π12) cos (π12)]=sin (π2+2θ) cos π6=cos 2θ×12=12 cos 2θ