The value of cos(2π7)+cos(4π7)+cos(6π7)=-1a. Find a.
Determine the value of a in cos(2π7)+cos(4π7)+cos(6π7)=-1a.
cos(2π7)+cos(4π7)+cos(6π7)=-1a⇒2cos3π7cosπ7+cos6π7=-1a⇒2cos3π7cosπ7-cosπ7=-1a⇒cosπ72cos3π7-1=-1a⇒cosπ72cos3π7-1sin3π7sin3π7=-1a⇒cosπ72cos3π7cos3π7-sin3π7sin3π7=-1a⇒cosπ7sin6π7-sin3π7sin3π7=-1a⇒cosπ72sin3π14cos9π142sin3π14cos3π14=-1a⇒cosπ7cos9π14cos3π14=-1a⇒12cos11π14+cos7π14cos3π14=-1a⇒12-cos3π14+0cos3π14=-1a⇒-12=-1a⇒a=2
Hence, the value of a is 2.