The value of cos 60∘ is
1/2
Consider an equilateral ΔABC with sides of 2 units as shown in fig. Let there be a perpendicular dropped from A to side BC cuttng BC at D.
Now, in ΔABD andΔACD:
AD is common
AB = AC (sides of an equilateral ΔABC)
and ∠ADC=∠ADB=90∘∴ΔABD≅ΔACD (RHS congruency)⇒∠BAD=∠CAD (corresponding angles of congruent Δs)⇒∠BAD+∠CAD=∠BAC=60∘⇒∠BAD=∠CAD=30∘and BD=DC=12BC=1In ΔABD,AB2=AD2+BD2⇒22=12+BD2⇒BD=√3cos(∠BAD)=cos30∘=ADBA=√32Also, cos(∠ABD)=cos60∘=BDAB=12