wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of cosAcos2Acos3A...cos999A=12a, where A=2π1999. Find the value of a.

Open in App
Solution

Let, P=cosacos2acos3a...cos999a
Q=sinasin2asin3a...sin999a.
Then,
2999PQ=(2sinacosa)(2sin2acos2a)...(2sin999acos999a)
=sin2asin4a...sin1998a
=(sin2asin4a...sin998a)[sin(2π1000a)][sin(2π1002a)]...[sin(2π1998a)]
=sin2asin4a...sin998asin999asin997a...sina=Q.
It is easy to see that Q0. Hence, the desired product is P=12999
Ans: a=999

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon