The value of cos[12cos−1cos(−14π5)] is
We have, 12cos−1(cos(−14π5))
=12cos−1(cos(14π5)) ...(cos(-A)=cosA)
=12cos−1(cos(3π−π5))
=12(π−π5)
=2π5
Therefore
cos(2π5)
=cos(π−3π5)
=−cos(3π5)
Also cos(2π5)
=sin(π2−2π5)
=sin(π10)