The value of cosπ15·cos2π15·cos4π15·cos8π15 is
116
-116
1
0
Explanation for correct option
Given trigonometric function is cosπ15·cos2π15·cos4π15·cos8π15
cosπ15·cos2π15·cos4π15·cos8π15=cosπ15·cos4π15·cos2π15·cos8π15=142cosπ15·cos4π15·2cos2π15·cos8π15=14cos4π15+π15+cos4π15-π15·cos8π15+2π15+cos8π15-2π15∵2cosacosb=cosb+a+cosb-a=14cosπ3+cosπ5·cos2π3+cos2π5=1412+5+14·-12+5-14cosπ3=12,cos2π3=-12,cos2π5=5-14andcosπ5=5+14=145+34·5-34=145-916∵a2-b2=a+ba-b=-116
Hence, the correct option is optionB