The value of cos θ cos(90o - θ) - sin θ sin (90o - θ) is:
1
0
2
-1
cos θ cos(90o - θ) - sin θ sin (90o - θ )
= cos θ sin θ - sin θ cos θ
= 0
Prove the following:
(i) sin θ sin(90o−θ)−cos θ cos (90o−θ)=0 (ii) cos(90o−θ)sec(90o−θ)tan θcosec(90o)sin(90o−θ)cot(90o−θ)+tan (90o−θ)cot θ=2 (iii) tan (90o−A)cot Acosec2 A−cos2 A=0 (iv) cos(90o−A)sin(90o−A)tan(90o − A)=sin2 A (v) sin(50o+θ)−cos(40o−θ)+tan1o tan 10o tan 20o tan 70o tan 80o tan 89o=1