The value of (cosθ+sinθ+1)(cosθ+sinθ−1)−2sinθcosθ is
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ
Solve the following equations :(i) sin θ+cos θ=√2(ii) √3 cos θ+sin θ=1(iii) sin θ+cos θ=1(iv) cosec θ=1+cos θ(v) (√3−1)cos θ+(√3+1)sin θ=2