The correct option is C 0
cos50∘+cos70∘+cos170∘
=2cos(50∘+70∘2)cos(50∘−70∘2)+cos170∘
=2cos60∘cos(−10∘)+cos(180∘−10∘)
=cos10∘−cos10∘=0
Alternate Solution:
We know that,
cosα+cos(α+2π3)+cos(α+4π3)=0
Now, cos50∘+cos70∘+cos170∘
=cos50∘+cos170∘+cos70∘
=cos50∘+cos(50+120)∘+cos(360−70)∘
=cos50∘+cos(50+120)∘+cos(50+240)∘
Let α=50∘
cosα+cos(α+2π3)+cos(α+4π3)
=0