The correct option is B π3
Let S=5+9+15+23+⋯ n terms
S= 5+9+15+⋯
Subtracting the above two equations,
tn=5+(4+6+8+⋯ (n−1) terms)
⇒tn=5+n−12[2×4+(n−2)2]
⇒tn=n2+n+3
cot−15√3+cot−19√3+cot−115√3+cot−123√3+⋯∞
=∞∑r=1cot−1(r2+r+3√3)
=∞∑r=1tan−1(√3r(r+1)+3)
=∞∑r=1tan−1⎛⎜
⎜
⎜
⎜⎝r+1√3−r√31+r+1√3⋅r√3⎞⎟
⎟
⎟
⎟⎠
=∞∑r=1[tan−1r+1√3−tan−1r√3]
=(limr→∞tan−1r+1√3)−tan−11√3
=π2−π6
=π3