The value of cot70∘+4cos70∘ is
a=cot70+4cos70
⇒a=cot(90−20)+4cos(90−20)
⇒a=tan20+4sin20 [∵cot(90−θ)=tanθ,cos(90−θ)=sinθ]
⇒a=sin20+4sin20cos20cos20
⇒a=sin20+2sin40cos20=sin20+sin40+sin40cos20
⇒a=2sin30cos10+cos(90−40)cos20 [∵sinC+sinD=2sinC+D2cosC−D2]
⇒a=cos10+cos50cos20
=2cos30cos20cos20 [∵cosC+cosD=2cosC+D2cosC−D2]
⇒a=2×√32
⇒a=√3