The value of cotA+tan(180°+A)+tan(90°+A)+tan(360°−A) is
Prove that:
(i)cos(2π+θ)cosec(2π+θ)tan(π/2+θ)sec(π/2+θ)cosθcot(π+θ)=1
(ii)cosec(90∘+θ)+cot(450∘+θ)cosec(90∘−θ)+tan(180∘−θ)+tan(180∘+θ)+sec(180∘−θ)tan(360∘+θ)−sec(−θ)=2
(iii)sin(180∘+θ)cos(90∘+θ)tan(270∘−θ)cot(360∘−θ)sin(360∘−θ)cos(360∘+θ)cosec(−θ)sin(270∘+θ)(iv)1+cotθ−sec(π2+θ)}1+cotθ+sec(π2+θ)}=2cotθ
(v)tan(90∘−θ)sec(180∘−θ)sin(−θ)sin(180∘+θ)cot(360∘−θ)cosec(90∘−θ)=1