The value ofcot-1(9)+cosec-1414 is given by
0
tan-1x
π4
π2
Explanation for the correct option:
Find the required value.
Given: cot-1(9)+cosec-1414
Let cosec-1414=A
⇒cosecA=414∴sinA=441∵cosecA=1sinA
By using the identity
sin2A+cos2A=1⇒4412+cos2A=1⇒cos2A=1-4412⇒cos2A=1-1641⇒cos2A=2541⇒cosA=541,
∴tanA=45tanA=sinAcosA⇒A=tan-145
Now,
cot-1(9)+cosec-1√414=tan-119+tan-145∵cot-1x=tan-11x
=tan-119+451-1945∵tan-1x+tan-1y=tan-1x+y1-xy=tan-15+364545-445=tan-14141=tan-11=π4
Hence, option (C) is the correct answer.
The value of cot−19+cosec−1√414 is given by