The value of cot∑n=123cot−11+∑k=1n2k is
2325
2523
2324
2423
Explanation for the correct option:
Find the required value.
We have,
cot∑n=123cot−11+∑k=1n2k=cot∑n=123cot−11+2×n(n+1)2=cot∑n=123cot−11+n(n+1)=cot∑n=123tan−111+n(n+1)=cot∑n=123tan−1n+1-n1+n(n+1)=cot∑n=123tan−1n+1-tan−1n∵tan−1A-tan−1B=tan−1A-B1+AB=cottan−124-tan−11=cottan−124-11+24(1)=cottan−12325=cotcot−12523=2523
Hence, option (B) is the correct answer.