The value of cot∑n=123cot-11+∑k=1n2k is
2325
2523
2324
2423
Explanation for the correct option
Step-1 Sum of AP series:
Given function is, cot∑n=123cot-11+∑k=1n2k
Consider ∑k=1n2k∑k=1n2k=21+2+…+n=2nn+12=n2+n
Step-2 Sum of original series:
Thus,cot∑n=123cot-11+∑k=1n2k=cot∑n=123cot-11+n2+n
Consider ∑n=123cot-11+n2+nWe have,∑n=123cot-11+n2+n=∑n=123tan-111+n2+n[∵cot-1x=tan-11x]=∑n=123tan-111+nn+1=∑n=123tan-1n+1-n1+nn+1=∑n=123tan-1n+1-tan-1n[∵tan-1a-tan-1b=tan-1a-b1+ab]=tan-12-tan-11+tan-13-tan-12+…+tan-124-tan-123=tan-124-tan-11=tan-124-11+24×1=tan-12325
Thus,cot∑n=123cot-11+n2+n=cottan-12325=cotcot-12523∵tan-1x=cot-11x=2523∵cotcot-1x=x
Therefore, cot∑n=123cot-11+∑k=1n2k=2523
Hence, option(B) is correct.