The correct option is
B always positive
Given determinant is,
D=∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣
Consider the matrix A=∣∣
∣∣abcbcacab∣∣
∣∣
Cofactor of this matrix A is AC=∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣
Thus, we can say that cofactor of matrix A is given matrix D.
Thus, by property of cofactor of matrix, we can write,
∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣2
∴∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣∣∣
∣∣abcbcacab∣∣
∣∣
∴∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣=−∣∣
∣∣abcbcacab∣∣
∣∣∣∣
∣∣acbbaccba∣∣
∣∣
∴∣∣
∣
∣∣bc−a2ac−b2ab−c2ac−b2ab−c2bc−a2ab−c2bc−a2ac−b2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣∣∣
∣∣a−cbb−acc−ba∣∣
∣∣
∴D=∣∣
∣
∣∣a2−bc+bcab−ab+c2ac−b2+acab−c2+abb2−ac+acbc−bc+a2ac−ac+b2bc−a2+bcc2−ab+ab∣∣
∣
∣∣
∴D=∣∣
∣
∣∣a2c22ac−b22ab−c2b2a2b22bc−a2c2∣∣
∣
∣∣