The correct option is D −5√3(5−√6)
On taking √5 common from C2 and C3, the given determinant can be written as:
Δ=(√5)2∣∣
∣
∣∣√(13)+√321√(15)+√(26)√5√23+√(65)√3√5∣∣
∣
∣∣
Now applying C1→C1−√3C2−√(13)C3, we have
Δ=5∣∣
∣
∣∣−√3210√5√20√3√5∣∣
∣
∣∣
⇒Δ=−5√3(5−√6)