L=13+232+333+434+⋯∞
L3=132+233+334+435+⋯∞⇒2L3=13+132+133+134+⋯∞⇒2L3=1/31−13
⇒L=34=0.75
Alternate Solution:
We know that
11−x=∞∑n=0xn , if |x|<1
Differentiate both the sides w.r.t. x, we get
1(1−x)2=∞∑n=0nxn−1
1(1−x)2=∞∑n=1nxn−1
(as first term is zero at n=0)
Now, put x=13
1(1−13)2=∞∑n=1n3n−1
⇒94=3∞∑n=1n3n
⇒∞∑n=1n3n=34=0.75