The correct option is
B 4√33Here, 1cos290o+1√3sin250o
=1cos(270+20)o+1√3sin(270−20)o
as we know, cos(270+A)=sinA
& sin(270−B)=−cosB
So, =1sin20+1√3(−cos20)
=−√3cos20+sin20−√3cos20cos20
=−(√3cos20−sin20)−√3sin20cos20
=√3cos20−sin20√3sin20cos20
(Multiply & Divide in Numerator & denominator by 2 we get. )
=2(√32cos20−12sin20)√32(2sin20cos20)
=2(sin60cos20−cos60sin20)√32(sin40)
=4√3sin(60−20)sin(40)=4√3=4√33
So, value is 4√3/3