cos620=cos(1800−1180);cos520=cos(1800−1280);cos660=cos(1800−1140)
=−cos(1180) ; =−cos(1280) ; =−cos(1140)
=−cos(520+660) ; =−cos(660+620) ; =−cos(620+520)
∴ cos620sin520sin660+cos520sin660sin620+cos660sin620sin520
=−[cos520cos660−sin520sin660]sin520sin660+−[cos660cos620−sin660sin620]sin660sin620+−[cos620cos520−sin620sin520]sin620sin520
=[1−cot520cot660]+[1−cot660cot620]+[1−cot620cot520]
=3−cot520cot660−cot660cot620−cot620cot520
Now, 520+660+620=1800
We know if A+B+C=1800
cotAcotB+cotBcotC+cotCcotA=1
∴ cos620sin520sin660+cos520sin660sin620+cos660sin520sin620=3−1=2