The value of 23+1x−41−23x−12 is
Solve the equations:
(i) 5x = 3x + 24;
(ii) 8t + 5 = 2t − 31;
(iii) 7x − 10 = 4x + 11;
(iv) 4z + 3 = 6 + 2z;
(v) 2x − 1 = 14 − x;
(vi) 6x + 1 = 3(x − 1) + 7;
(vii) ;
(viii) ;
(ix) 3(x + 1) = 12 + 4 (x − 1);
(x) 2x − 5 = 3(x − 5);
(xi) 6(1 − 4x) + 7(2 + 5x) = 53;
(xii) 3(x + 6) + 2 (x + 3) = 64;
(xiii) ;
(xiv) .