sin5θ=sin(3θ+2θ)
⟹sin5θ=sin3θcos2θ+cos3θsin2θ
⟹sin5θ=(3sinθ−4sin3θ)(2cos2θ−1)+(4cos3θ−3cosθ)(2sinθcosθ)
Therefore, sin5θsinθ=(3−4sin2θ)(2cos2θ−1)+(4cos3θ−3cosθ)(2cosθ)
⟹sin5θsinθ=(3−4(1−cos2θ))(2cos2θ−1)+(8cos4θ−6cos2θ)
⟹sin5θsinθ=(−1+4cos2θ)(2cos2θ−1)+(8cos4θ−6cos2θ)
⟹sin5θsinθ=−2cos2θ+8cos4θ+1−4cos2θ+8cos4θ−6cos2θ
⟹sin5θsinθ=16cos4θ−12cos2θ+1