The value of tanα1−cotα+cotα1−tanα is identically equal to
tanα1−cotα+cotα1−tanα
=tanα1−1tanα+cotα1−tanα
=tan2αtanα−1−cotαtanα−1
=tan2−1tanαtanα−1
=tan3α−1(tanα)(tanα−1)
=(tanα−1)(tan2α+tanα+1)(tanα)(tanα−1)
=tan2α+tanα+1tanα
=tanα+1+cotα
=sinαcosα+cosαsinα+1
=sin2α+cos2αcosαsinα+1
=1cosαsinα+1
=secαcscα+1
Hence answer is C