wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of z|¯z|2¯z|z2| is(if complex number z has amplitude π3)

A
12+32i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1232i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1232i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12+32i
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 12+32i
Let z=x+iy then, ¯z=xiy

|z|=|¯z|=x2+y2

z2=(x+iy)2=x2+i2y2+2xyi

z2=(x+iy)2=x2y2+i2xy

|z2|=(x2y2)2+4x2y2

|z2|=(x2+y2)2

|z2|=x2+y2

and given that tan1(yx)=π3

yx=tan(π3)

yx=3

y2=3x2

Now, consider the expression z|¯z|2¯z|z2|

Substituting the above obtained values in the expression we get

z|¯z|2¯z|z2|=(x+iy)(x2+y2)(xiy)(x2+y2)

z|¯z|2¯z|z2|=(x+iy)(xiy)

z|¯z|2¯z|z2|=(x+iy)(xiy)×x+iyx+iy

z|¯z|2¯z|z2|=(x+iy)2(x2+y2)

z|¯z|2¯z|z2|=x2+i2y2+2xyi(x2+y2)

Substituting y2=3x2 we get


z|¯z|2¯z|z2|=x23x2+23x2i(x2+3x2)

z|¯z|2¯z|z2|=2x2+23x2i4x2

Therefore, z|¯z|2¯z|z2|=1+3i2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon