The correct option is
D −12+√32iLet
z=x+iy then, ¯z=x−iy
|z|=|¯z|=√x2+y2
⇒z2=(x+iy)2=x2+i2y2+2xyi
⇒z2=(x+iy)2=x2−y2+i2xy
⇒|z2|=√(x2−y2)2+4x2y2
⇒|z2|=√(x2+y2)2
⇒|z2|=x2+y2
and given that tan−1(yx)=π3
⇒yx=tan(π3)
⇒yx=√3
⇒y2=3x2
Now, consider the expression z|¯z|2¯z|z2|
Substituting the above obtained values in the expression we get
⇒z|¯z|2¯z|z2|=(x+iy)(x2+y2)(x−iy)(x2+y2)
⇒z|¯z|2¯z|z2|=(x+iy)(x−iy)
⇒z|¯z|2¯z|z2|=(x+iy)(x−iy)×x+iyx+iy
⇒z|¯z|2¯z|z2|=(x+iy)2(x2+y2)
⇒z|¯z|2¯z|z2|=x2+i2y2+2xyi(x2+y2)
Substituting ⇒y2=3x2 we get
⇒z|¯z|2¯z|z2|=x2−3x2+2√3x2i(x2+3x2)
⇒z|¯z|2¯z|z2|=−2x2+2√3x2i4x2
Therefore, ⇒z|¯z|2¯z|z2|=−1+√3i2