wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 16cos2π15cos4π15cos8π15cos14π15 is

Open in App
Solution

16cos2π15cos4π15cos8π15cos14π15

Divide and multiply by sin2π15

=8(2sin2π15cos2π15cos4π15cos8π15cos14π15)sin2π15

=8(sin4π15cos4π15cos8π15cos14π15)sin2π15 [ Since,sin2θ=2sinθcosθ ]

=4×2sin4π15cos4π15cos8π15cos14π15sin2π15

=2×2sin8π15cos8π15cos14π15sin2π15

=2sin16π15cos14π15sin2π15

=2sin(π+π15).cos(ππ15)sin2π15

=2sinπ15.(cosπ15)sin2π15

=2sinπ15.cosπ15sin2π15

=sin2π15sin2π15

=1

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon