The correct option is
B tan−1xGiven, 2tan−1(cosectan−1x−tancot−1x)
⟹2tan−1(cosec(cot−1(1x))−tan(tan−1(1x)))
=2tan−1(√1+cot2(cot−1(1x)) − 1x) ,,,,,,,,,,,,,,,, cosec2x=1+cot2x
=2tan−1(√1+1x2−1x)
=2tan−1(√1+x2−1x)
Let x=tanA
Hence the above expression reduces, to
=2tan−1(√1+tanA2−1tanA)
=2tan−1(secA+1tanA) ....... sec2θ=1+tan2θ
=2tan−1⎛⎜
⎜
⎜⎝1+1cosAsinAcosA⎞⎟
⎟
⎟⎠ ......... secx=1cosx and sinθcosθ=tanθ
=2tan−1(1+cosAsinA)
=2tan−1(tanA2)
=2×A2
=A
=tan−1(x)