The value of α satisfying 6sin2α−5cosα=2 is
Consider the given equation,
6sin2α−5cosα=2
6(1−cos2α)−5cosα=2
6−6cos2α−5cosα−2=0
−6cos2α−5cosα+4=0
6cos2α+5cosα−4=0
6cos2α+8cosα−3cosα−4=0
2cosα(3cosα+2)−1(3cosα+2)=0
(3cosα+2)(2cosα−1)=0
When,
3cosα+2=0
cosα=−23
α=cos−1(−23)
When,
2cosα−1=0
cosα=12
cosα=cosπ3
α=π3
Hence, this is the answer.