The correct option is B n∑k=11k
In=∫10(1−x2)ndx
=∫10(1−C1x2+C2x4+......+(−1)nCnx2n)dx
=1−C13+C25−......−(−1)n2n+1
But In=(2n)!!(2n+1)!!
For Example 71, consider
1−(1−x)n=C1x−C2x2+....+(−1)n−1Cnxn
Integrating within the limits 0 to 1, we get
∫101−(1−x)nxdx=C1−C22+C33+......+(−1)n−1Cnn
Thus R.H.S.=∫101−xn1−xdx
=∫10(1+x+x2+...+xn−1)dx
=1+12+........+1n. for Example 72
∫10(1−x)ndx=∫10(1−C1x+C2x2+.....+(−1)nCnxn)dx
L.H.S.=∫10xndx=1n+1 and the R.H.S. is equal to
C0−C12+C23−.......+(−1)nCnn+1