The correct option is A 164
Using identity {∵2sinθcosθ=sin2θ}
a=cos12cos24cos36cos48cos72cos84
⇒a=(2sin12cos12)cos24cos36cos48cos72cos842sin12
⇒a=2sin24cos24cos36cos48cos72cos844sin12
⇒a=−2sin48cos48cos36cos72cos(180−84)8sin12
⇒a=−2sin96cos96cos36cos7216sin12
⇒a=−sin192cos36cos7216sin12=−sin(180+12)cos36cos7216sin12
⇒a=sin12(2sin36cos36)cos7232sin12sin36=2sin72cos7264sin36
⇒a=sin14464sin36=sin(180−144)64sin36=164
Hence, option 'A' is correct.